Reflecting on 2023: A Year of Innovation and Growth

2023 brought a wave of dynamic collaborations and innovative ventures to PostProcess Technologies. Our dedicated team has been tirelessly advancing state-of-the-art post-processing automated and intelligent solutions, transforming the landscape of the additive manufacturing sector. As we approach the year’s end, let’s delve into the noteworthy milestones that unfolded at PostProcess this past year.

Move Away from IPA: AUX-400-RINSE allows for an IPA-free Resin Removal Workflow

resin removal process

In May, we announced our latest rinse detergent to be used in our resin removal workflow: AUX-400-RINSE. AUX-400-RINSE is an organic-based rinse solution that replaces the IPA rinse step in the PostProcess resin removal workflow that may be required following the processing of parts in one of our full-stack automated solutions.

This is a revolutionary development for the resin removal workflow because IPA can create many challenges to additive operations. When combined with our automated and intelligent solutions, AUX-400-RINSE now creates an IPA-free workflow, allowing for a safer alternative to IPA, thanks to a high flashpoint that does not require explosion-proof or ATEX-certified equipment. It also offers improved performance, rinsing 3X as many parts per Gallon (or 3.78 L) as IPA, and improved sustainability because it is easily filtered for reuse.

Partnerships Across the Globe Help Increase the Reach of PostProcess

PostProcess has consistently recognized the significant value that channel partners bring to the additive manufacturing market. In fact, we announced 6 new partnerships in 2023:

PLM Group

PLM Group, a company rooted in the Nordic region, specializes in delivering 3D design and additive manufacturing solutions. This partnership effectively introduces PostProcess to the markets of the Nordic countries, the Baltic region, and Iceland.


Bringing over 25 years of industry expertise, CAD BLU has established itself as a reliable source of digital 3D printing solutions tailored to jewelry design and manufacturing. This partnership simplifies the process for customers to acquire a comprehensive solution for wax 3D printing, facilitating end-to-end digitization of the workflow from part design through 3D printing to post-processing.

Additive Solutions Group (ErPro Group Subsidiary)

As a leading service bureau in France, Erpro Group is widely recognized for its expertise in utilizing additive manufacturing for production purposes. Through its subsidiary, Additive Solutions, the company concentrates on empowering customers with comprehensive manufacturing process solutions. The collaboration with PostProcess helps their customers incorporate automated post-processing and delivers end-to-end solutions to the French market.

CDG 3D Tech

Concurrent Design Group (CDG 3D TECH), a company specializing in 3D engineering design and manufacturing brings PostProcess’s digitized post-processing solutions to customers across England, Scotland, Wales, Northern Ireland, and the Republic of Ireland.


Headquartered in Wales, RAPLAS Technologies, a distinguished industrial manufacturing technology company, leads the way in SLA production resin systems, resin materials, and software. This collaboration establishes a well-defined workflow for large-format SLA in additive manufacturing, including the crucial post-processing step of resin removal.


Proto3000, a leading provider of 3D printing solutions and services, provides PostProcess solutions to dental customers throughout the United States and Canada to transform the resin removal process for dental professionals.

Bendix Commercial Vehicle Systems Revolutionizes Post-Processing with Automated FDM Support Removal 

3D printed polyjet heart before and after. We have published a new case study featuring Bendix Commercial Vehicle Systems, a company specializing in the development and provision of cutting-edge active safety technologies, energy management solutions, and air brake charging and control systems for heavy-duty trucks, tractors, trailers, buses, and commercial vehicles across North America.

This insightful Q&A explores the efficiency of the PostProcess Volumetric Velocity Dispersion (VVD) technology integrated into the VORSA 500™ and highlights how this technology enables Bendix substantial time savings in their FDM part finishing, leading to reduced costs for their additive manufacturing operations.

Nexus Dental Makes the Leap to Automation for Post-Processing with the DEMI 430™

3D printed polyjet heart before and after.Nexus Dental Lab stands at the forefront of the dental industry and is committed to transforming dental practices. They provide a range of services, including digital smile diagnostic services, dental implant restorations, crown and bridge solutions, implant guide design and production, direct print services, and Lucitone digital copy dentures.

Encountering issues in their resin post-processing workflow, they struggled with the use of IPA, which posed both environmental sustainability concerns and risks to their staff. Discover how the implementation of the PostProcess® DEMI 430™ enabled them to reduce manual labor by one-third.

You can read the full case study here

New and Improved ROI Calculator for PolyJet

3D printed polyjet heart before and after.
In 2023, we also launched a brand new ROI tool to help determine the best PostProcess solution for your PolyJet operation. Enter basic details about your existing post-processing operations, and we’ll analyze them to illustrate the potential cost savings and productivity improvements achievable by transitioning to an automated PolyJet Support Removal solution.

Our calculator examines your current operation, taking into account labor costs, the time allocated to process each part, and the percentage of parts that experience warping or damage.
While the productivity gains may vary for each customer, many witness a return on investment within weeks, thanks to reduced cycle times and increased throughput.

You can access the ROI calculator here

‘How It Works’ Webinar Series Decodes PostProcess’ Automated & Intelligent Post-Processing Solutions

3D printed polyjet heart before and after.This year, our How it Works webinars examined the workflow associated with each of our revolutionary automated and intelligent post-processing solutions. Hosted by an expert from our PostProcess team, this series looked at our post-processing solutions for resin, FDM, PolyJet, and wax.

Watch the recorded webinars here.



2023 was full of exciting news here at PostProcess, and 2024 is shaping up to be just as exciting. Brace yourselves for an equally exhilarating 2024, filled with groundbreaking advancements and announcements that promise to redefine your experience with automated post-processing.


-> Want to connect? Contact Us

-> Return to Blog Homepage

Maximizing ROI: Switching to an IPA-Free Resin Removal Workflow with PostProcess AUX-400-RINSE

In the world of resin 3D printing, efficiency, safety, and cost-effectiveness are paramount. One critical aspect of the resin removal workflow is the final rinse step, which historically involved using Isopropyl Alcohol (IPA). However, PostProcess has revolutionized this process with the AUX-400-RINSE, completely eliminating the need for IPA in the PostProcess resin removal workflow. AUX-400-RINSE, used after processing parts in the full stack resin removal solution, offers a game-changing rinse step that not only improves safety but also significantly impacts the bottom line. In this blog post, we will explore the advantages of switching from traditional IPA to AUX-400-RINSE.

Traditional IPA: The Conventional Choice

For many, IPA has been the traditional solution for resin removal, but its safety and sustainability challenges are driving a shift in the industry.
Its high flammability makes it a hazardous substance, raising concerns about operator safety and workplace accidents. Additionally, IPA contributes to harmful VOC (Volatile Organic Compounds) emissions, impacting air quality and the environment. As regulations become stricter and environmental consciousness rises, users are seeking alternatives that prioritize both safety and sustainability.

AUX-400-RINSE: A Leap Towards Improved Performance & Sustainability

Enter AUX-400-RINSE, a cutting-edge alternative that not only enhances safety but also proves to be a more economical choice. PostProcess developed AUX-400-RINSE as a groundbreaking alternative to IPA for the final rinse step in response to industry demands for enhanced safety, sustainability, and efficiency. Recognizing the safety and sustainability issues with IPA, PostProcess designed AUX-400-RINSE, providing a safer, environmentally friendly, and more cost-effective solution. AUX-400-RINSE is also notable for its lower Volatile Organic Compound (VOC) rate compared to IPA, further contributing to a greener approach. By eliminating the need for IPA in the PostProcess comprehensive resin removal workflow, AUX-400-RINSE not only ensures a secure working environment but also improves performance with 3X more parts rinsed than IPA which streamlines operations, reduces material wastage, and promotes a sustainable approach to 3D printing processes.

Understanding the Total Cost of Ownership (TCO) for the Final Rinse Step

When considering the TCO, it’s crucial to take multiple factors into consideration. Safety, longevity, evaporation rates, and reusability are pivotal factors in making an informed decision. Here’s why AUX-400-RINSE shines:

  • Improved Safety: AUX-400-RINSE boasts reduced flammability and lower exposure risks compared to IPA, ensuring a safer working environment for operators.
  • Enhanced Longevity: AUX-400-RINSE outperforms IPA by rinsing three times more parts, significantly extending its usability.
  • Reduced Operator Time: With fewer tank changes required (10 fewer changes annually in this scenario), operators save valuable time, contributing to increased productivity.
  • Minimized Solvent Loss: AUX-400-RINSE exhibits approximately 2 times lower evaporation rates compared to IPA, meaning less material wastage and more cost savings.
  • Reusability: AUX-400-RINSE can be easily recovered through simple filtering, allowing for a sustainable and cost-effective solution. IPA, in contrast, cannot be reclaimed in the same manner.

Conclusion: A Safe Investment for the Future

In this comparison, the AUX-400-RINSE emerges as the superior choice for an IPA-free resin removal workflow. Its unparalleled safety features, extended longevity, reduced operator time, minimal solvent loss, and reusability factor into a compelling ROI story. Making the switch from traditional IPA to AUX-400-RINSE isn’t just a cost-effective decision; it’s an investment in a streamlined, sustainable, and safer resin removal process. Choose the PostProcess comprehensive resin removal solution and experience the difference — not just in your workflow but also in your bottom line.


-> Learn more about AUX-400-RINSE

-> Want to connect? Contact Us

-> Return to Blog Homepage

PolyJet 3D-Printing and Post-Processing in the Medical Field

PolyJet 3D printing finds extensive use across various medical applications. Although it has benefits for training and education, post-processing complex 3D-printed designs can prove difficult. Let’s look at the use of PolyJet 3D printing in the medical field, typical challenges encountered during post-processing, and strategies for addressing these issues.

PolyJet Printing in the Medical Industry

PolyJet has many advantages over other forms of 3D printing for the medical industry. Anatomical modeling for educational purposes benefits from PolyJet’s versatility in properties and colors. They can also use models pre-surgery to help doctors plan out their methods before operating, which can create better outcomes for patients. PolyJet is an excellent medium for these purposes as it offers detailed prints. Scans of patient anatomy can be easily replicated thanks to PolyJet’s ability to create small channels and details on models.
3D printed polyjet heart before and after.
Common PolyJet printers used for medical applications can include:

  • Eden
  • Connex 260
  • Connex 350
  • Connex 500
  • J735
  • J750 DAP
  • J8-Series

PolyJet prints offer the detail needed for medical models, but they can also create a lot of challenges for post-processing.

Challenges with PolyJet Post-Processing

Although PolyJet technology can produce accurate and intricate models, it can also give rise to a series of costly post-processing complications. Medical anatomical models have small channels that need careful cleaning by hand tools. The hybrid layer present on PolyJet-printed parts can pose difficulties as well, requiring additional manual steps like scrubbing and cleaning before we can consider the model ready for use.

These post-processing complexities can subsequently impose constraints on part design. The expense incurred because of part rebuilds stemming from breakage can also become problematic. With manual methods, breakage is incredibly common.

A post-processing solution that can mitigate these issues associated with conventional methods is needed. That’s where PostProcess’s automated and intelligent solutions come in.

Automated Post-Processing Solutions for Medical PolyJet Parts

By tackling the concerns and challenges commonly encountered with traditional post-processing techniques, PostProcess’s DEMI suite of solutions promises a significant enhancement for PolyJet-printed parts intended for the medical sector.
3D printed polyjet heart before and after.
Our automated solutions are designed specifically for PolyJet support removal, processing both thin and thick wall geometries while minimizing breakage. With the ability to batch process multiple parts at once, software-driven automation virtually eliminates inconsistent part outcomes and any need for manual or skilled labor.

Given the advantages that PolyJet brings to the medical field, understanding the potential hurdles within the PolyJet workflow can be important. Embracing an automated post-processing solution has the potential to enhance not just the general quality of your PolyJet 3D printed components, but also streamline your 3D printing processes, leading to time and cost savings.

Curious to learn more about all the cost and time savings with an automated solution and see our systems in person? If you’re in the Minneapolis/St. Paul area, check out our channel partner AdvanceTek’s Application Exploration Open House: Medical 3D-Printing happening on September 11th from 10 AM-2 PM.

Enhancing FDM Support Removal: Best Practices

In the world of Fused Deposition Modeling (FDM), it’s understood that post-processing will likely be required for most prints. The flexibility of this technology has allowed for parts to have intricate geometries and shapes. However, this often requires additional support structures to be placed in the build that needs to be removed before the final part can be used.

It’s important to understand why supports are necessary, what types of supports are available for FDM prints, and how to best set up your operation for success for better FDM support removal.

Why are Supports Needed?

3D printing with FDM technology can create complex geometries and shapes. However, some designs have intricate features that can pose a printing challenge, specifically prints that require overhangs exceeding 45° or protruding surfaces greater than 10mm. Support structures are essential for maintaining the structural integrity of these 3D-print designs during their creation.
3D printed orange egg with lattice work on black table with grey background.
These support structures act as temporary scaffolding, propping up the overhanging or protruding regions as the printer deposits the subsequent layers. These additional structures provide support, ensuring the filament adheres correctly, keeping the intended shape of the design. Without these supports, the molten filament material used for FDM may sag or droop, leading to inaccuracies and distortions in the final print.

It’s important to note: the need for support structures depends on the 3D printer, filament, and temperature you are printing with.

Common FDM Support Materials

While there are many types of FDM support materials, it’s important to understand there are two major categories of FDM support structures: soluble and breakaway supports.

Soluble supports are made of a secondary material that provides temporary support to the FDM 3d printed part during the printing process. These supports are made from a different soluble material than the part material and are dissolved in a specific solvent, typically water or a chemical solution. After the 3D printing is complete, the printed object is immersed in the solvent, causing the soluble support material to dissolve completely, leaving behind the finished, clean object without manual support removal. Examples of soluble supports are SR-30 and SR-35.
3D printed orange egg with lattice work on black table with grey background.
Breakaway supports another type of support structure used in FDM 3D printing. Unlike soluble supports, which dissolve in a specific solvent after printing, breakaway supports are removed manually after the printing process is complete. The breakaway support material is weaker and more brittle than the main printing material, so it can be snapped or broken away from the printed object. To remove these breakaway supports, pliers or hand tools are used to gently break or peel supports away from the printed part. Examples of breakaway support materials are P-400R, PC-BASS, PPSF-BASS, and SUP800B.

Best Practices for Support Removal for FDM Parts

As we’ve discussed, many FDM builds require soluble supports and/or breakaway supports that need to be removed before the part is complete. Manufacturers may face bottlenecks due to labor requirements with traditional support removal methods.

With all this in mind, there are a few best practices to consider when printing with FDM to improve your post-processing.

Look at your design file. 

Reducing the amount of support structures is the most obvious way to reduce your post-processing time. Changing your part design to have fewer severe angles can reduce the number of supports needed.

Part orientation also plays a major factor in how supports are used in your design. Consider slicing software like GrabCAD Print or Insight to reduce support material for your FDM 3D printing. These software tools enable you to preview the print job, estimate required time and material, and assess support needs.

Try an automated solution.

Our automated and intelligent solutions that feature our VVD spray technology offer an alternative to traditional post-processing. They were designed to address the common post-processing challenges by eliminating soak tanks and manual support removal. Our BASE™ and VORSA 500™ solutions leverage our VVD technology that takes a novel approach to FDM support removal that is rooted in software.

Why VVD Technology?

But why would you consider an automated solution? Here are just a few of the reasons our support removal solutions are better than traditional methods:

3D printed orange egg with lattice work on black table with grey background.

  • Rapid Support Removal: Configurable agitation efficiently dissolves support material, ensuring consistent support removal with industry-leading cycle times. An automated solution can reduce support removal processing times by 80%.
  • Reduced Dry Times: By minimizing exposure to chemistry and eliminating the submersion process, the opportunity for material absorption is reduced, resulting in faster dry times. The typical drying time reduction is greater than 60% (about ⅓ as long) compared to typical submersion tanks.
  • Consistent Results: The ability to bundle crucial parameters into recipes guarantees consistent processing, enabling a predictable workflow. Sensor monitoring ensures that energy sources contributing to mRoR (mechanical rate of removal) & cRoR (chemical rate of removal) remain within optimal ranges during each cycle.
  • Reduced Part Damage: Low-pressure agitation, precise temperature control, and limited exposure time, combined with auto-dosed chemistry, minimize the risk of warping delicate geometries.
  • Increased Detergent Capacity: The technology allows for over 2 times the support material weight per volume of detergent compared to alternative soluble concentrates. This reduces manual labor time between changeovers and recurring disposal costs.

If you’re ready to experience an elevated post-processing solution, be sure to sign up for our FDM How it Works webinar happening on September 26th at 10:00 AM EST.  Register here.


-> Want to connect? Contact Us

-> Return to Blog Homepage

3 Considerations to Improve Your Additive Manufacturing Operation in 2023

What’s on your to-do list for your additive operation in 2023? Additive manufacturing continues to grow in popularity and become a major part of a wide variety of industries. It’s important in today’s economic climate to evaluate your overall workflow and how you can improve upon your operation for the new year.

Back in December, we released our 4th Annual Post-Processing Survey. Within the survey, we asked respondents from all over the globe about their current additive operations, including post-processing, and how they planned to advance and alter their plans in the upcoming year. Let’s look at some of the common themes to see what to evaluate in your additive manufacturing operation for 2023.

Environmental Health & Safety Are Paramount to Effective Workflows.

Environmental, health, and safety (EH&S) considerations have always been important to anyone in additive manufacturing. The safety and well-being of their operations continue to be critical to maintaining an effective facility.

Close-up of hald woman's face with safety goggles and mask on.57% of respondents stated they want to improve their operation’s environmental, health, and safety in 2023, with the largest concentration in the EU. Those that use DED, Vat Photopolymerization, and Powder Bed Fusion print technologies reported the highest percentage of respondents looking to improve EH&S. When reviewing by industry, the medical industry is looking to improve EH&S most, with 71% prioritizing it for 2023.

As new print technologies emerge, so do new environmental, health, and safety risks. The standard ISO 17296-2 lists seven major groups under the heading “3D printing,” which shows that operating in an additive environment is not without danger. Many risks are linked to the technology itself, as well as the risks of the raw printing material. Powdered materials used in technologies like SLS, DMLS, and SLM are finely milled and increase the risk of anoxia. Liquids like resin used in technologies, such as DLP, SLA, and CLIP print technologies, can irritate and/or burn the user if they come in direct contact with the skin.

Finish 3D Printed Parts Faster.

Traditional post-processing methods are notoriously time-consuming. For the third year in a row, our respondent’s number one post-processing concern was the time it took for them to finish parts. While material extrusion remains the print technology that reported this pain point the most often, the time to finish parts is problematic across all technologies. Post-printing can be labor and time-intensive, leading to bottlenecks that can derail the entire additive workflow if you aren’t careful.

Why does it take so long to finish parts with traditional post-processing methods? One reason is that most of these post-processing methods are taken from traditional manufacturing. They weren’t designed to work specifically for additive manufacturing, so they aren’t efficient in removing support structures or excess resin in any sort of optimized way. This leads to greater bottlenecks, part warpage, and part breakage. Automated solutions that allow for reduced manual labor and increased efficiency can ease some of these common bottlenecks.

The Growing Importance of Sustainability in Additive Manufacturing.

Another buzzword heard around the additive field is the increased emphasis on sustainability. While often lumped into environmental, health, and safety, we can say based on our respondent’s input that sustainability is an important factor to consider for any additive operation. 38% of the people we spoke with are looking to increase sustainability in 2023.
Image to represent sustainability with hands circling a sustainable icon with other sustainable ideas floating around in circles.
Many printing companies emphasize sustainability, with companies like EOS taking a serious stance on integrating sustainability into their overall company mission. They’ve even offered powder for 3D printing that can be reused. Stratasys also maintains a commitment to what they call Mindful Manufacturing™ and have published a Sustainability Report

We here at PostProcess also feel that this dedication to sustainability should extend through to the post-printing step in the workflow. That’s why we also are committed to continuously improving our additive-tailored solutions’ efficiencies and cutting down on material usage and waste.


As the additive market continues to grow, post-processing methods can cost companies a lot of time, money, and resources and impact the overall efficiency of an operation. That’s why it’s important to evaluate your current processes and how you can improve them.

If you’d like to learn more about our insights from our 4th Annual Post-Processing Survey, download the full report here.

-> Want to connect? Contact Us

-> Return to Blog Homepage

Top Post-Processing Pain Points for Material Extrusion Technology Users

Post-processing has long been called the “dirty little secret” of additive manufacturing. But as additive manufacturing becomes more popular and additive users move into production with their additive solutions, the bottlenecks and problems become more and more apparent.

For our 4th Annual Post-Processing Survey, we asked respondents about their top post-processing challenges for each of the most popular print technologies. Here are the responses for the most popular technology used: Material Extrusion. Material extrusion includes FDM, FFF, and MEM print technologies.

The top pain points for this group remained consistent over the past three years of our survey, which indicates that while print technologies continue to advance, the traditional post-processing techniques still cause bottlenecks in the additive workflow.

Length of Time to Finish Parts

3D printed orange egg with lattice work on black table with grey background.
The first and most common pain point reported was the time to finish parts. Material extrusion allows for the 3D printing of complex geometries. However, these geometries then require support material to ensure the stability of the print. Often the traditional process of removing supports is cumbersome and requires a large amount of manual labor and/or soaking. Chemical baths are used to soak parts made with soluble supports. Lengthy post-processing time slows down production exponentially and can disrupt and even ruin an additive workflow if bottlenecks happen too often.


Traditional support removal methods can lead to inconsistent results due to the manual labor required. With the need for skilled technicians to manually remove supports, parts cleaned by different technicians will be different, creating inconsistency in the final product.

Damaged Parts

Before and after black 3d printed chain.
Along with consistency, damaged parts are a common challenge with traditional material extrusion post-processing methods. We can look at well-known companies like Toro, who used to spend 2X as long to finish parts as they did to print parts.

Parts that are soaked to remove support material often need to be soaked for many hours at a time. With parts soaking in a caustic bath for ten or more hours, parts become saturated with chemicals or bloated, which makes them unusable.

These struggles with the length of time to finish parts, consistency, and damaged parts are common with traditional post-processing methods for not only material extrusion but all 3D print technologies. This is because traditional post-processing was pulled from other traditional manufacturing methods and wasn’t designed for additive manufacturing. With that in mind, solutions created specifically for additive manufactured parts can help ease these common post-processing concerns. Automated solutions built with additive in mind can help cut time, labor, and ultimately the cost associated with the post-printing step of additive manufacturing.


Want to learn more insights from the 2022 survey? Download the report here.

2022 Year in Review

2022 ushered in an exciting and motivating year for the 3D printing industry. Innovations in print materials and print technologies have continued to move additive manufacturing into a major asset in the shift to industry 4.0. Here at PostProcess, we were bustling with renewed energy and enthusiasm about new solutions, technologies, partnerships, and team members. As always, our team was hard at work to continue to create innovative new solutions for post-processing. Here’s a look at a few of the significant events that happened here at PostProcess in 2022.

New FDM Support Removal Solution Now Available: The VORSA 500

In February, we announced our latest FDM Support Removal Solution: The VORSA 500™. The new VORSA 500 leverages our proven Volumetric Velocity Dispersion (VVD) technology to remove consistent, hands-free support structure removal on 3D-printed FDM parts. Joining our other FDM support removal solutions, the VORSA 500 provides the fastest cycle times in the industry, reducing support removal processing times by over 50% compared to submersible tank systems.
VORSA 500 Machine Model
Enabled by our AUTOMAT3D® software platform, the VORSA 500 uses multi-dimensional spray coverage to ensure fast cycle times without damaging parts. It allows for quick dry times while maintaining part integrity because it does not saturate parts with detergent, thanks to the proprietary spray nozzle technology. With user-friendly software controls, operators have control over key process parameters and the ability to optimize cycles to produce consistent end parts.

“… the VORSA 500 demonstrates our continued market leadership in the additive manufacturing post-print space and provides the industry with the fastest FDM support removal solutions,” commented Rich Caplow, PostProcess Vice President, Product.

CONNECT3D® Additive Manufacturing Platform Launched

One of the major announcements at PostProcess this year was the commercial launch of our Additive Manufacturing Software Platform, CONNECT3D®. The CONNECT3D Additive Manufacturing Platform addresses long-standing gaps in the post-processing market, allowing the digital thread for smart additive manufacturing to move beyond design and print, all the way through to the final post-processing step. It generates parameters that can include time, temperature, and agitation to optimize processing time in your PostProcess solution(s). The platform also leverages Industrial IoT capabilities to optimize solution performance and maximize customer value.
VORSA 500 Machine Model
CONNECT3D offers:

  • integration with factory automation systems
  • open architecture that includes public APIs
  • intuitive presentation of alerts and alarms for real-time operations management and access to historical information
  • planning and scheduling features
  • remote monitoring
  • notification services over text or email
  • enterprise-grade features such as role-based user administration, efficient license management, and robust security

“Our CONNECT3D Additive Manufacturing Platform sets the stage for the industry’s next step-function advancement in additive manufacturing,” stated Rich Caplow, PostProcess VP of Product.

Automated Wax Support Removal Solution Announced

In May of this year, we announced our proprietary formulation: PLM-601-SUB. We developed this detergent to solve wax support removal concerns. Large batches of wax 3D-printed parts can be processed in our DEMI family of solutions with software-controlled parameters, making the process safe and easy for operators.

Thanks to its ability to make highly detailed patterns, 3D-printed wax casting is widely adopted across many industries and is especially useful for luxury and jewelry makers. While wax allows for highly detailed prints, it also creates incredibly fragile parts, making traditional post-processing methods difficult. Highly trained technicians are required, which forces overall low productivity.
3 purple wax rings
Traditional wax support removal also requires processing with IPA, which is typically time intensive with a multi-step process, inconsistent, and requires extensive manual labor with high technician attendance time. Safety concerns are associated with this form of support removal because of the necessity of heating the highly flammable IPA bath. The low longevity of IPA also hurts the environment due to the large amounts of waste generated.

“Effective wax support removal is a well-known obstacle for the industry. We are pleased to solve this post-processing challenge with a comprehensive solution that includes our newest industry-unique detergent,” stated Matthew Noble, Lead Chemist from PostProcess.

New Chief Marketing Officer Melissa Hanson Joins PostProcess Team

melissa hanson headshot Industry and marketing veteran Melissa Hanson joined the PostProcess team in August as our Chief Marketing Officer (CMO). Hanson is a seasoned executive with deep expertise in spearheading disruptive innovation and leading high-performing teams to deliver exceptional value and transformational growth in the manufacturing and technology sectors. Hanson brings 17+ years of experience, which includes 8 years as a senior marketing leader in the additive manufacturing industry.

Said Hanson, “I am excited to join the talented and passionate team at PostProcess, and eager to lead the way in educating on its vision and mission because I believe it is one of tremendous impact.”

EOS Strategic Partnership Announced

October was an important month for us here at PostProcess. We announced our distribution partnership with EOS, a leading supplier of responsible manufacturing solutions via industrial 3D printing technology. Our VAD technology solution will allow us to provide a fully automated and sustainable depowdering solution for EOS customers.
melissa hanson headshot
Variable Acoustic Displacement™, also known as VAD technology for short, automates gross depowdering for 3D printed parts. Current powder removal methods are highly manual or semi-automated and may cause safety and sustainability issues. Our VAD solution is thermodynamically controlled with video and infrared monitoring while releasing, transferring, and recovering loose powder particles hands-free, to mitigate these concerns.

Our patent-pending VAD technology uses software intelligence to optimize mechanical energy and closed-loop thermal and displacement techniques for revolutionary bulk depowdering results, enabling full process chain automation. The powder removal and recovery achieved with VAD technology improve process performance and control, providing customers with enhanced sustainability and employee safety, repeatability and productivity, and lower operating costs. Customers can print highly detailed and complex parts without worrying about breakage in the post-processing step.

“We are proud to solidify this partnership with EOS, a global leader in industrial 3D printing, to help end users more easily adopt the complete workflow of additive manufacturing and scale their operations,” stated Jeff Mize, PostProcess CEO.

4th Annual Post-Processing Survey Results Released

The Fourth Annual Post-Processing Industry Trends Survey was released on December 7th. This survey explores the post-processing needs and solutions by market and provides an in-depth, segmented look at additive post-processing across a myriad of applications. Our goal in surveying the market and assembling this data is to help make clear the path toward a successful future for Additive Manufacturing (AM) by recognizing the downfalls, considerations, and opportunities for all aspects of post-processing.
post-processing survey icon on ipad
Within the report, learn more about 3D print technology trends, post-processing method trends, production vs. prototyping trends, post-processing expenditures, post-processing pain points, and post-processing investments.

This survey is the first and only of its kind to evaluate post-processing needs across the additive landscape, and is now available for download here:


2022 was a year of innovation and forward movement here at PostProcess. And while the year is wrapping up, we have so many exciting things coming up for 2023. We can’t wait to share all the exciting things we have in store for the new year, so stay tuned.

-> Want to connect? Contact Us

-> Return to Blog Homepage

What is Post-Processing in Additive Manufacturing?

Additive manufacturing is a revolutionary way to create 3D-printed end-user parts. It can offer benefits to almost any industry looking to ramp up prototyping and/or production. But when talking about the power of additive manufacturing, it’s also important to note one of the often overlooked steps: post-processing. Post-processing is often necessary and is one of the final steps required for a customer-ready part. Each print technology requires a different post-processing workflow.

But what is post-processing? Why is it needed? And what are some common post-processing techniques? Let’s take a deeper look at what post-processing is and common post-processing methods for popular 3D print technologies.

What is Post-Processing?

Post-processing refers to the third step in the additive manufacturing workflow. It can refer to the one or many processes that need to occur once a part is 3D printed to remove support structures or excess material on the build. This can include support removal and/or surface finishing. What steps need to be taken are largely dependent not only on the print technology used, but the print material used and the intended final use of the 3D printed part.

Why is Post-Processing in 3D Printing Needed?

Examples of 4 3d printed partsOnce a part is 3D printed, depending on the technology used, some steps need to be taken before we can use it for its final intended purpose. Many 3D prints require supports that are built into the design to maintain the integrity of the build structure. This is typical with technologies like Fused Deposition Modeling [FDM] and PolyJet, but can also appear in resin 3D printing in Stereolithography [SLA]. Some technologies that print metal parts, like Direct Metal Laser Sintering [DMLS], leave build lines on the part that may require surface finishing.

As we mentioned, each print technology requires different post-processing steps before a part is complete and customer ready. There are also many post-processing techniques to process these parts. Let’s examine some traditional post-processing techniques.

What are Some Traditional 3D Printing Post-Processing Techniques?

Print technologies that use liquid resin typically come out covered in excess resin. The additional resin needs to be removed before the final part. Traditional methods to remove excess resin include baths of toxic IPA or solvent that will remove the greasy excess resin. This can often take multiple baths and require manual hand scrubbing to remove the residue fully. Parts can then be cured in an oven and painted if needed.

Many metal 3D print technologies like Direct Metal Laser Sintering [DMLS] and Selective Laser Melting [SLM] leave layer lines on their 3D printed parts. It often leaves parts with a rough surface. To address this, traditional post-processing methods include vibratory machines and hand sanding to clean and smooth these parts for their intended use.

Fused Deposition Modeling typically requires support structures when the print has overhangs or suspended features. Support structures allow for the successful printing of complex shapes by propping up these otherwise unsupported areas and keeping them from collapsing while being printed, helping to maintain part geometry. FDM support material is made of a different material than the build material and is sometimes soluble in a solvent. For FDM support removal, traditional methods include soaking in IPA to remove the support material or manual removal with pliers or other hand tools.

Many risks and problems are associated with these traditional and outdated post-processing methods. While traditional methods can be effective in finishing parts, they create bottlenecks for additive manufacturers. For example, soaking in IPA baths can harm the build material and warp parts. Soaking for extended periods in IPA or caustic solvents can also waterlog parts and lead to long drying times before they are complete. Lastly, manual bulk removal has implications for both consistency and quality.

What is Automated Post-Processing in 3D Printing and Additive Manufacturing?

Automated post-processing integrates hardware, software, and chemistry to alleviate some traditional post-processing struggles. A software-intelligent post-processing solution offers reliable, consistent, and repeatable results that aren’t found with traditional methods. It combines years of data from thousands upon thousands of benchmarked parts to optimize recipes to deliver precise finishing, helping any operation scale at a rapid pace.

By automating the post-processing step in additive manufacturing, you can eliminate time-consuming and expensive piece-by-piece manual cleaning, providing reliable resin and support removal and dependable surface finishing. An automated post-processing solution can ease the challenges with traditional methods and eliminate the bottleneck in additive workflows.

For more information on automated post-processing solutions, visit [HERE].

-> Want to connect? Contact Us

-> Return to Blog Homepage

IPA Health, Safety, and Sustainability Concerns – Is there a Better Option?

Sustainability, health, and safety are all important factors for most manufacturing operations. As we’ve mentioned previously, companies are making strides toward reducing their carbon footprint and improving their sustainability practices. With 65% of additive manufacturers looking to increase their health, safety, and sustainability in their post-processing operations this year, it’s important to evaluate every element of your post-processing workflow.

One major hurdle additive manufacturers face with the sustainability, health, and safety of their operations is the use of IPA in their post-processing workflow, especially with resin. What are some alternatives to IPA in the post-processing workflow, and what’s the best option for your operation? Read on to find out.

Why Not IPA?

Beaker with IPAIPA or isopropyl alcohol is the traditional solvent used for post-processing many resins. IPA also reaches saturation fast and requires frequent changeouts, which can affect the sustainability of your additive operation.

Once the parts are soaked in an IPA bath, often multiple times, they can become saturated and warped from the time spent in the tank(s) to get the resin removed. Even after multiple baths, parts may still need manual scrubbing or cleaning to remove any leftover residue or stickiness from the soaking process. This can cause musculoskeletal disorders in technicians who are required to repeat this scrubbing step repeatedly.

While your parts will get clean, IPA can be problematic from both a sustainability point of view and a health/safety point of view. The risk of dermal or respiratory damage is a major concern for operations that use IPA. Even more concerning is the low flashpoint of IPA (12℃ or 53.7℉), which makes this chemical combustible and can cause explosions.

Traditional IPA Alternatives

Alternatives to IPA are available that can be used for resin removal. However, most do not help in areas like sustainability, health, or safety. For example, dipropylene glycol methyl ether (DPM) or tripropylene glycol methyl ether (TPM) may be used instead of IPA. But these solvents still cause harmful fumes and require frequent chemical changeouts. They aren’t very effective in complex geometries and therefore pose the same warpage concerns as IPA. With all the extra post-processing steps required with these alternatives, you’ll also pay more per unit.

Is There a Better Option?

If sustainability, health, and safety are at the forefront of your considerations for a post-processing solution, PostProcess’s PLM-403-SUB could be the answer to your post-processing struggles. Our detergent offers a significantly lower flashpoint when compared to IPA and does not give off overpowering, unpleasant fumes like IPA or its alternatives. Because our detergent is less hazardous than IPA, it can be cheaper to dispose of and reaches saturation much slower than IPA, meaning less waste.

PLM-403-SUB was specifically developed to work with our patented Submersed Vortex Cavitation (SVC) technology, a transformative post-printing solution. When used in one of our DEMI family of solutions, our detergent unlocks revolutionary benefits and efficiencies for SLA/DLP/CLIP users.


-> Want to connect? Contact Us

-> Return to Blog Homepage

Additive Manufacturing vs. 3D Printing: Is there a Difference?

3D printing and additive manufacturing are two terms often used interchangeably. But are additive manufacturing and 3D printing really the same thing? We’re here to take a deep dive into 3D printing and additive manufacturing to help you better understand how these two terms relate to each other.

What is 3D Printing?

By definition, 3D printing refers to ‌the process of creating a three-dimensional object from a digital model (such as a CAD drawing). They put the drawing into the 3D printing machine, and it slices the object into thin layers. The machine then lays these thin layers of material down in succession to create an end object.

A variety of materials are used to create these models, including metal powders, thermoplastics, and resins. Common 3D print technologies include:

  • FDM (fused deposition modeling): A print technology that extrudes a thermoplastic filament to create the layer-by-layer model.
  • SLS (selective laser sintering): A polymer powder print technology. Pre-heated to its melting point, it is selectively melted with a CO2 laser, fusing the particles together to create a solid part.
  • SLA (stereolithography): A print technology where a photosensitive liquid resin is solidified under an ultraviolet laser.
  • PolyJet: A print technology that uses liquid photopolymers and builds parts by depositing the ultrafine droplets of these liquid photopolymers on a build platform through the print head(s).

3D printing is generally used for small-scale operations and wouldn’t be used to describe many of the larger-scale operations that use 3D printing in their manufacturing workflow.

What is Additive Manufacturing?

On the other hand, Additive Manufacturing features 3D printing as an element of its overall process. But it encompasses so much more than just 3D printing. Additive manufacturing requires 3D printers, but they are only one part of the term. Additive involves a much more complex and in-depth industrial manufacturing process, including the entire print workflow. It encompasses multiple processes, while 3D printing refers to only a small part of the process.

These operations involve more than creating 3D models, which can include:

  • Modeling (CAD drawings)
  • Material traceability
  • The workflow
  • Post-processing or finishing steps such as clear coating, painting, polishing, and heat treatments
  • Quality and inspection systems

So What’s the Difference?

3D printing uses an additive process to create an end product, but it is not always additive manufacturing. However, everything that is made in additive manufacturing is considered 3D printing.

We can conclude that 3D printing refers to smaller-scale, at-home printing operations, while additive manufacturing has been used to refer to large-scale or industrial manufacturing. This means context is important when you’re differentiating between the two terms.

So while they both refer to similar processes, they are (albeit subtly) different. To determine which term to use, consider the context of what you’re looking to describe. When referring to an operation that has a full workflow with multiple steps in a manufacturing or industrial setting, you should use the term additive manufacturing. For an operation that creates one-off models or is a hobbyist operation, you would use the term 3D printing.


-> Want to connect? Contact Us

-> Return to Blog Homepage

Site Map | Terms of Use | Privacy Policy | © 2024 PostProcess Technologies. All Rights Reserved | 2495 Main Street, Suite 615, Buffalo, NY 14214, USA | Phone: 1.866.430.5354 |