The Building Blocks of SVC Technology

PostProcess DEMI 400™ using SVC Technology

Welcome to the final post of our four-part series breaking down PostProcess’ core technologies. Our goal has been to help you understand how our integrated approach of software, hardware, and chemistry delivers the most transformative 3D post-printing results in the industry. In this last piece, we explain the building blocks of our patented Submersed Vortex Cavitation (SVC) technology, utilized in our popular DEMI 400, DEMI 800, and DEMI 4000 support and resin removal solutions. The key components to SVC are our:

  • Proprietary detergents
  • Vortex pumping scheme
  • Variable ultrasonics
  • AUTOMAT3D® software

Now let’s unpack the role each one of these components plays in our soluble support and resin removal solutions.

 

Proprietary Detergents:
A key contributor to the effectiveness of the SVC technology is our proprietary chemistry. The three primary detergents we currently offer for use in our SVC line were all developed by our PhD chemists specifically for additive materials, an approach unlike any other in the market. We provide a detergent specific for each of the main polymer-based print technologies – material extrusion (i.e., FDM), material jetting (i.e., PolyJet), vat polymerization (i.e., SLA). For each one of these technologies, PostProcess’ detergent will dissolve soluble support material or uncured resin without compromising the build material. The chemistry is optimized for the materials used by each technology, and then further optimized through multiple fine-tuned mechanical energy sources which we will cover in the next section. The parts processed while submerged in our detergent covers the Submersed portion of SVC technology.

 

Vortex pumping scheme:
Our SVC solutions utilize a strategic pumping scheme that creates a proprietary rotating motion of the part while submerged in the detergent. Here at PostProcess, we like to say this motion ensures that “parts that float sink, parts that sink float.” What that really means is that regardless of density or geometry and how that affects a parts buoyancy, the Vortex component of SVC technology will ensure that the part is uniformly exposed to the detergent and cavitation from the ultrasonics.

 

Variable Ultrasonics:
SVC TechnologyTo optimize the chemistry, PostProcess uses ultrasonic generated cavitation as another form of mechanical energy. The ultrasonics emit soundwaves at varying frequency and amplitude creating waves of compression and expansion in the detergent. This agitation of the liquid causes microscopic bubbles, cavitation, to form on the surface of the part. These bubbles agitate the support material as it is weakened by the chemistry, accelerating the processing time. What sets us apart from other machines in the industry? It’s the level of control we have from our AUTOMAT3D software and the fact that our ultrasonics are mounted on the side of the machine as opposed to the bottom. In a conventional system, the support material breaks down and settles on the bottom of the machine. This settled material would then impact the effectiveness of the wave emitted from the transducer. PostProcess’s SVC machines have mitigated this issue by mounting them on the side of the machine, ensuring maximum efficacy throughout the cycle.

 

AUTOMAT3D Software:
At this point, we have covered the hardware and chemistry portion of PostProcess’ SVC technology. However, being that we pride ourselves on being a comprehensive solution provider, there is one last vital piece to the puzzle, and that is our AUTOMAT3D software. What is essential to all of our technologies is the acute control of the system’s energy sources. AUTOMAT3D acts as the conductor of the whole process, configuring all of the energy output sources in response to sensor input data. The software manages temperature, ultrasonics output, and pump flow, all in concert with cycle time. Not only does the software provide the solution with the highest degree of energy management but also simplifies machine operation for the user. With recipe storage, process parameters can easily be saved for easy recall, requiring minimal operator time and promoting consistency with each cycle. Lastly, preventative maintenance and warnings allow users to plan for maintenance, further minimizing any downtime.

Now that you have a better understanding of our Submersed Vortex Cavitation technology,  is right for your application? Contact us today to discuss your specific needs and get the benchmark process started.

 

-> Return to Blog Homepage

-> Want to learn more? Contact Us

Site Map | Terms of Use | Privacy Policy | © 2024 PostProcess Technologies. All Rights Reserved | 2495 Main Street, Suite 615, Buffalo, NY 14214, USA | Phone: 1.866.430.5354 | info@postprocess.com

Twitter
YouTube
LinkedIn
Facebook