Why Automate Now?

Today’s environment is requiring companies to take a good hard look at how they can achieve cost and time savings as well as shorten and de-risk their supply chains. When it comes to additive manufacturing, automating the post-print step is possibly the best place to start.

Person pressing a button on Post-Processing Automated SolutionAs social distancing and remote work quickly become the new normal throughout most of the world, the downsides of relying on manual labor are at the forefront. It’s very like that you are evaluating your manufacturing strategy in the midst of COVID-19, as social distancing efforts can, unfortunately, be more negatively impactful to companies reliant on manual labor.

With all of the precariousness currently being posed by reduced workforces, the topic of conversation as of late is how certain manufacturing strategies can take hands-on labor out of the equation. That’s where automated 3D post-printing solutions come in.

The Shortcomings of Manual Labor

Even when operations are running normally, there are some key considerations of using manual labor for tasks like manufacturing or finishing parts. By the time that management, benefits, and fair salaries are taken into account, it’s obvious that maintaining a manual workforce is an expensive and time-consuming endeavor. Compared to automated alternatives, room for inconsistencies and human error abound with manual labor. Regardless of training and expertise, it’s virtually impossible for two people to perform the same task in the exact same manner. As a result, variability in output is always a risk factor. Software-driven automation in manufacturing counters this in exactness and high efficiencies, as automated workflows are renowned for consistency and increased throughput. 

While at this time you may be working to reduce individuals from your operation, in more normal circumstances, automation can quite directly enable a manual workforce to be more efficient. This is particularly relevant when it comes to finishing 3D printed parts. Usually, this is an intensive job that involves hours of soaking, picking, or sanding. In place of spending time on these laborious tasks, workers can instead devote their working hours to more value-adding duties. Two recent Case Studies on SLA and DLP Resin Removal outline this exact scenario for US-based Empire Group and Swedish design firm Splitvision.

White FDM 3D printed parts, one before post-processing with brown support material and one after post-processing without brown support material.To cite another real-life example, we recently held a Q&A session with The Toro Company which has implemented the automated BASE Support Removal solution for FDM. Support removal was previously the company’s largest contributor to workflow bottlenecks, as it accounted for 25% of each part’s cost and took twice the length of the 3D printing build time. Product Development Lab Supervisor Rob McArdell noted that the software-driven BASE solution has enabled ~90% decreases in both post-print process times and operator labor.

McArdell said, “With the BASE’s software control over temperature, pressure, agitation, and duration, our additive technician no longer needs to give much thought to support removal…He just pushes the right number for the correlating program, presses ‘start’, and walks away.” Automated post-printing has enabled Toro to drive bottom-line growth by allocating time to more valuable tasks and achieve timelines and projects that would’ve never before been feasible. To learn about the technology behind these dramatic results, check out this Automated FDM Support Removal White Paper or watch the Q&A Webinar Presentation with The Toro Company that was previously recorded.

The Risks of Outsourcing Labor

The idea of outsourcing additive manufactured parts to be finished at a sub-contractor is an alternative, but consideration of the risks associated with this tactic is a prudent step.

Outsourcing labor always falls short compared to the total process control enabled by in-house. By pinning one’s faith in a subcontractor, you’re resigning all quality control and risk management that you would otherwise have a say in. Additionally, every sub-contracting project, no matter how big or small, carries immense legal liability that can only be mitigated with an effective subcontractor agreement. If these legal doctrines are not iron-clad, they can pose immense opportunities for loopholes and excessive charges. Any change order or request outside of the Scope of Work carries the potential for delays, significant cost increases, and in the worst-case scenarios, lawsuits.

Even with an all-encompassing agreement, the cost and efficiency of subcontracting still play a negative factor compared to completing work in-house. Subcontracting is often unnecessarily costly, and excess time for things like shipping and back-and-forth communication must be allotted for.

Enabling Lights Out Manufacturing with Additive

While the “print” step of 3D printing is automated in nature, without technology like PostProcess’ software-driven solutions, post-printing can still be heavily reliant on manual labor. And as shown in our 2020 Annual Additive Post-Printing Trends Report, the use of manual labor is a growing concern for the industry across the board. A fully digitized additive manufacturing workflow enables a true lights-out operation, keeping costs low, efficiencies high, and production going 24/7. If fully automating is not possible right now, there are still steps you can take to make progress towards that goal. 

Bringing automated solutions into your manufacturing process will enable you to be more self-reliant in future supply chain disruptions as well. While it’s not often that we undergo a worldwide quarantine, supply chains, especially those that span internationally, are much more susceptible to disruptions. Digitized additive manufacturing workflows, while especially crucial to implement now, will never stop being advantageous.

Want to Learn More? Meet some of our Customers.

 

Company Logos" SCAD, BOSE, TORO, Protolabs, Johns Hopkins School of Medicine, Penn State Health Medical Center, IFZ Engeering, HARBEC, BERTRAM Dental Lab, ProTek Models.

 

Site Map | Terms of Use | Privacy Policy | © 2024 PostProcess Technologies. All Rights Reserved | 2495 Main Street, Suite 615, Buffalo, NY 14214, USA | Phone: 1.866.430.5354 | info@postprocess.com

Twitter
YouTube
LinkedIn
Facebook