Advancing Utilization of 3D Printed PolyJet Medical Models: A Realistic Look at Post-Printing Challenges

It is no secret in our industry that PolyJet support removal is considered by many to be an art rather than a science. This is especially true when it comes to cleaning support off of anatomical models. In this blog post, we’re going to discuss the three main challenges associated with traditional methods for support removal on anatomical parts, which is an increasingly popular application. These three challenges are high manual labor, breakage, and the cost associated with reprinting damaged parts.

Manual Labor

Most PolyJet users turn to manual removal of supports based on the assumption it’s their only option. In alternative applications, a waterjet can be used to speed up the process a bit. However, especially with anatomical models, water jetting significantly increases the risk of damage. Users are left to use picks, brushes, and other handheld tools to pick away at the support slowly. This is an extremely time-consuming process, as we hear stories of users spending over an hour on just one part. This loss of time makes the user less productive and prevents them from performing more value-added activities. The final issue with manual labor is breakage. Because of human error involved, many anatomical models get damaged during support removal.

Breakage

The challenge of breakage is so prevalent when it comes to anatomical models for two reasons; the materials used and the geometries printed. Often for anatomical applications, soft-durometer materials are utilized for a more realistic feel. These materials can have a low shear modulus, making them much easier to damage during handling, especially when picking or scraping off support. The second component attributing to these high breakage rates is how fragile the geometries typically are. Anatomical models are often comprised of thin walls, complex internal geometries, and fine-featured details. These features, combined with the delicate nature of the material itself, are what lead to parts breaking at a costly rate. This leads to the final challenge, costly reprinting of damaged parts.

Reprint Cost

Breaking an additively manufactured part creates a ripple effect when it comes to cost. Think of the time the user already spent attempting to performing support removal before the part broke. Think of the time it required to print the part the first time around. You are spending twice as much of your own time for each part that is damaged. That time spent costs money. And if you plan on any design iteration, your plan has just been set back. Additionally, you are spending twice as much on both build and support materials for each part you have to reprint. It is easy to see how quickly a high breakage rate slows down your process while wasting your time and money.

In order to scale the anatomical modeling industry, these issues must be resolved. If you are interested in learning about our software-driven technology approach to tackle these issues, contact us today. Or even better, stop by and see us at the largest dedicated additive manufacturing event in the world in just a few weeks at Formnext 2019 in Frankfurt, Germany, November 19-22, in Hall 12.1, Stand B40.

-> Return to Blog Homepage

-> Want to learn more? Contact Us

Site Map | Terms of Use | Privacy Policy | © 2019 PostProcess Technologies. All Rights Reserved | 2495 Main Street, Suite 615, Buffalo, NY 14214, USA | Phone: 1.866.430.5354 | info@postprocess.com

Twitter
YouTube
LinkedIn
Facebook