The Building Blocks of SVC Technology

PostProcess FORTI™ using SVC Technology

Welcome to the final post of our four-part series breaking down PostProcess’ core technologies. Our goal has been to help you understand how our integrated approach of software, hardware, and chemistry delivers the most transformative 3D post-printing results in the industry. In this last piece, we explain the building blocks of our Submersed Vortex Cavitation (SVC) technology, utilized in our popular CENTI, FORTI, and DEMI support and resin removal solutions. The key components to SVC are our:

  • Proprietary detergents
  • Vortex pumping scheme
  • Variable ultrasonics
  • AUTOMAT3D™ software

Now let’s unpack the role each one of these components plays in our soluble support and resin removal solutions.

 

Proprietary Detergents:
A key contributor to the effectiveness of the SVC technology is our proprietary chemistry. The three primary detergents we currently offer for use in our SVC line were all developed by our PhD chemists specifically for additive materials, an approach unlike any other in the market. We provide a detergent specific for each of the main polymer-based print technologies – material extrusion (i.e., FDM), material jetting (i.e., PolyJet), vat polymerization (i.e., SLA). For each one of these technologies, PostProcess’ detergent will dissolve soluble support material or uncured resin without compromising the build material. The chemistry is optimized for the materials used by each technology, and then further optimized through multiple fine-tuned mechanical energy sources which we will cover in the next section. The parts processed while submerged in our detergent covers the Submersed portion of SVC technology.

 

Vortex pumping scheme:
Our SVC solutions utilize a strategic pumping scheme that creates a proprietary rotating motion of the part while submerged in the detergent. Here at PostProcess, we like to say this motion ensures that “parts that float sink, parts that sink float.” What that really means is that regardless of density or geometry and how that affects a parts buoyancy, the Vortex component of SVC technology will ensure that the part is uniformly exposed to the detergent and cavitation from the ultrasonics.

 

Variable Ultrasonics:
SVC TechnologyTo optimize the chemistry, PostProcess uses ultrasonic generated cavitation as another form of mechanical energy. The ultrasonics emit soundwaves at varying frequency and amplitude creating waves of compression and expansion in the detergent. This agitation of the liquid causes microscopic bubbles, cavitation, to form on the surface of the part. These bubbles agitate the support material as it is weakened by the chemistry, accelerating the processing time. What sets us apart from other machines in the industry? It’s the level of control we have from our AUTOMAT3D software and the fact that our ultrasonics are mounted on the side of the machine as opposed to the bottom. In a conventional system, the support material breaks down and settles on the bottom of the machine. This settled material would then impact the effectiveness of the wave emitted from the transducer. PostProcess’s SVC machines have mitigated this issue by mounting them on the side of the machine, ensuring maximum efficacy throughout the cycle.

 

AUTOMAT3D Software:
At this point, we have covered the hardware and chemistry portion of PostProcess’ SVC technology. However, being that we pride ourselves on being a comprehensive solution provider, there is one last vital piece to the puzzle, and that is our AUTOMAT3D software. What is essential to all of our technologies is the acute control of the system’s energy sources. AUTOMAT3D acts as the conductor of the whole process, configuring all of the energy output sources in response to sensor input data. The software manages temperature, ultrasonics output, and pump flow, all in concert with cycle time. Not only does the software provide the solution with the highest degree of energy management but also simplifies machine operation for the user. With recipe storage, process parameters can easily be saved for easy recall, requiring minimal operator time and promoting consistency with each cycle. Lastly, preventative maintenance and warnings allow users to plan for maintenance, further minimizing any downtime.

Now that you have a better understanding of our Submersed Vortex Cavitation technology,  is right for your application? Contact us today to discuss your specific needs and get the benchmark process started.

 

-> Return to Blog Homepage

-> Want to learn more? Contact Us

The Building Blocks of SRF Technology

PostProcess RADOR™ using SRF Technology

Welcome to the third in our series of four blog posts highlighting each of PostProcess’ proprietary technology approaches. Here, we will take a deep dive into Suspended Rotational Force (SRF), utilized in our Surface Finish family of solutions.

The building blocks that drive the performance of our SRF technology are the following:

  • Our proprietary detergent
  • Our proprietary abrasive media
  • Our AUTOMAT3D™ software

Now let’s dig into what’s so special about each one of these components:

Proprietary Detergent:
First off, I want you to understand that we are not leveraging any chemical energy in this technology. This detergent was explicitly designed by our chemists to optimize the mechanical, abrasive energy that is provided by the media. The detergent ensures the additive manufactured part being processed can circulate through the media as well as wash away any broken down media or part material that accumulates during processing. When you’re thinking SRF detergent, you’re thinking media optimization. By optimizing the media, we are ensuring consistency throughout the batch. Using one detergent that is safe for all materials gives you the freedom to process a variety of materials in one batch.

 

Proprietary Abrasive Media:
SRF TechnologyNow onto the real work-horse of our SRF technology – media. Our development engineers performed extensive testing on a variety of different materials, shapes, and sizes of abrasive media to determine the most effective combination specific to additive manufactured materials. Depending on your application, our engineers will help you choose the right media based on your finishing requirements. With the range of offerings we provide, you can address multiple materials in one batch for a more one-size-fits-all approach. Alternatively, we can choose a specific material, density, shape, and size tailored to your part material and geometry.

Now that you know the role of the detergent and media, you now understand the Suspended aspect of SRF. With the 3D printed part suspended in the media/detergent mixture, these two components alone have provided you with the most advanced and additive-specific abrasive technology. But in real PostProcess nature, we take it to another level and give it a brain.

 

AUTOMAT3D Software:
By introducing software, we are providing our customers with an unprecedented level of process insight and control. In our SRF technology, our AUTOMAT3D software is controlling the friction force that a part is experiencing to provide process flexibility. The software comes pre-loaded with four different customizable agitation settings. These settings allow you to alter your process specific to how much friction force is applied to each batch of parts to adjust to different materials and geometries effortlessly. Additionally, AUTOMAT3D keeps you in the loop with what is happening with your machine with process monitoring. By keeping you up to date with tank levels and respective smart cycle times, we allow you to plan ahead for maintenance and minimize downtime.

With a better understanding of the software, you now know the Force aspect in SRF. Where does Rotational fit? That part is simple. When the motor in our machines kick on, a vibratory motion is initiated, moving whatever media/part mixture is sitting within the part envelope in a circular motion along the Y (vertical) axis. While the parts are suspended, the media/detergent mixture will rotate as a result of the circulating motion. This motion will ensure uniform exposure of the part to the media/detergent mixture and provide the consistent results that we promise. This summarizes the Rotational component of our SRF technology.

 

Suspended Rotational Force should make a lot more sense now, but how can you know if it is right for your application? Contact us today to discuss your specific needs and get the benchmark process started.

 

-> Return to Blog Homepage

-> Want to learn more? Contact Us

The Building Blocks of TAF Technology

PostProcess DECI Duo™ using TAF Technology

Welcome to part two of the four-part series highlighting each of PostProcess’ core 3D post-printing technologies. In part one, we discussed our VVD technology, ideal for automated support removal on technologies such as SLA, PolyJet, and FDM. In this post, we’ll explore the building blocks of our Thermal Atomized Fusillade (TAF) technology, utilized in our one-of-a-kind Hybrid DECI Duo. TAF technology performs multiple automated processes, including excess powder removal and surface finishing, allowing for fast cycle times and consistently finished end parts. The key components to TAF are:

  • Proprietary detergents
  • Suspended solids
  • Fusillade jets
  • AUTOMAT3D™ software

Let’s dive into the role each one of these elements plays in the engineering of TAF technology.

 

Proprietary Detergents:

The detergent utilized in the DECI Duo is designed specifically by our chemists to optimize the mechanical and abrasive energy that is provided by the suspended solids. So another way to think of it is suspended solid optimization. The detergent helps the suspended solid circulation through the machine and enhances the solution’s capability to finish internal channels while reducing safety hazards associated with dry blast processes. We offer a primary detergent that is effective across a breadth of print technologies offering the freedom to process a variety of materials without swapping detergents.  Additionally, we continuously perform research to optimize each application; our most recent findings on Inconel 718 are available in this recently released white paper.

 

Suspended Solids:

A suspended solid is a fine particle, either metal or ceramic, that mixes with a detergent to create distinct abrading solutions to improve various surface properties. Our development engineers performed extensive testing on different materials, shapes, and sizes of suspended solids to determine the most effective combination specific to additive manufactured materials. Application dependent, our engineers will help choose the right suspended solids based on the user’s geometry and profile requirements. Together, our suspended solids and proprietary detergents provide the “Atomized” component of our TAF technology. This atomized approach offers flexible and consistent powder removal and surface finishing across a wide range of geometries.

 

Fusillade Jets:

VVD TechnologyWith our TAF technology, each jet emits compressed air, detergent, and suspended solids at variable software regulated pressures. The two “Fusillade” jets fire either simultaneously or in rapid succession, depending on the Agitation Algorithm setting within the software. The wide range of pressures, typically from 20 psi to 130 psi (138kPa – 896kPa), provides the level of flexibility needed to process materials across all technologies for a variety of finishing requirements. TAF technology uniformly processes a variety of geometries by having two software-controlled jets on single axes spraying the parts fixed on a rotating turntable. One jet is on the top of the machine moving front to back and the other moves up and down. This video animation helps demonstrate the process further.

 

AUTOMAT3D Software:

Our AUTOMAT3D software acts as the conductor of the whole process, configuring all of the energy output sources in response to sensor input data. AUTOMAT3D is integral in our TAF technology due to the intricacy of coordinating all of the numerous software-enabled energy sources. The software manages temperature, jet movement, turntable speed and direction, fluid and air pressure, all in concert with cycle time. This control over the temperature is the “Thermal” piece of TAF technology. AUTOMAT3D provides the solution with the highest degree of energy management while simultaneously simplifying machine operation. Recipe storage allows for process parameters to be saved for easy recall, requiring minimal operator time and promoting consistency with each cycle. To further minimize downtime, preventative maintenance and warnings allow users to plan ahead of time for maintenance.

 

Now that you have a better understanding of how our Thermal Atomized Fusillade technology works for powder removal and surface finishing, find out if it is right for your application!  Contact us today to discuss your specific needs and get the benchmark process started.

 

-> Return to Blog Homepage

-> Want to learn more? Contact Us

The Building Blocks of VVD Technology

Welcome to the first in our four-part series guiding you through a deep dive into the building blocks of our first-of-their-kind automated support and resin removal and surface finishing solutions 3D post-print technologies. You may know us as the world’s first and only software-driven solution for post-processing of additively manufactured parts for all 3D print technologies. What you may not know is that we have four unique key technologies that harness various chemical and mechanical energy sources that form the basis of all the innovative solutions we offer.

Our four core technologies are:

  • Volumetric Velocity Dispersion (for soluble support and resin removal)
  • Submersed Vortex Cavitation (for soluble support and resin removal)
  • Suspended Rotational Force (for surface finishing)
  • Thermal Atomized Fusillade (for excess powder removal and surface finishing)
PostProcess DECI™ using VVD Technology

In a series of four blog posts, we’ll educate you on the building blocks of each technology and relate them to the flashy words our technologies are tagged with. First up is our Volumetric Velocity Dispersion (VVD) technology for support and resin removal, which is used in our DECI and BASE Solutions.

The key components to VVD are our:

  • Proprietary detergents
  • Two jet rack manifolds
  • AUTOMAT3D™ software

Now let’s dive into the role each one of these components plays…

 

Proprietary Detergents:

Our additive-formulated chemistry is leading the charge, playing a key role in the power of our VVD technology. Unlike anyone else in the industry, our three primary detergents for use in the VVD line were all developed by our chemists specifically for additive materials. We have a detergent specific for each of the primary polymer based print technologies – material extrusion (i.e., FDM), material jetting (i.e., PolyJet), and vat polymerization (i.e., SLA). For each one of these technologies, PostProcess’ detergent will dissolve the soluble support material or uncured resin without compromising the build material. Our chemistry is optimized for the materials used by each technology, and then taken a step further and optimized by multiple fine-tuned mechanical energy sources which we will cover in the next section.

The parts being doused in a high volume of our proprietary detergent while processing covers the “Volumetric” portion of VVD technology.

 

VVD TechnologyTwo Jet Rack Manifolds:

Leveraging spray technology rather than submersion introduces a mechanical energy source that is very unique in the industry. PostProcess VVD technology utilizes two jet rack manifolds, the first being a stationary bottom mounted manifold intended for low pressure, full tray coverage. The second, top mounted manifold moves on a linear axis across the length of the chamber. The user may set parameters for varying levels of energy output from the jets via the AUTOMAT3D software for a more focused agitation. Together the two opposing jet streams keep the parts in equilibrium throughout the cycle mitigating the need for fixturing. The mechanical energy from these two streams, flowing at rates upwards of 200 GPM (over 750 liters/minute), optimizes the chemistry by disposing of the support material as it weakens, dramatically accelerating the cycle times. This high volume flow complemented by low pressures (less than 35 PSI, or 241 kPA) remains gentle on part geometries throughout processing. These powerful yet gentle flow patterns are what accounts for the “Velocity” component in our VVD technology.

 

AUTOMAT3D Software:

At this point, we have covered the hardware and chemistry portion of PostProcess’ VVD technology. Our AUTOMAT3D software is the final and most imperative part of our technology. The acute control of the system’s energy sources is essential to all of our solutions. AUTOMAT3D acts as the conductor of the whole process, configuring all of the energy output sources in response to sensor input data. The software manages the temperature, pH, jet flow patterns, and movement, all in concert with cycle time. This control over the combination of jet usage and movement is the “Dispersion” piece of the technology. Not only does the software provide the solution with the highest degree of energy management, but it also simplifies machine operation for the user. With recipe storage, process parameters can easily be saved for easy recall, requiring minimal operator time and promoting consistency with each cycle. Lastly, preventative maintenance and warnings allow users to plan for maintenance, further minimizing any downtime.

Now that you have a better understanding of our Volumetric Velocity Dispersion technology, find out if it is right for your application! Contact us today to discuss your specific application and get the benchmark process started.

-> Return to Blog Homepage

-> Want to learn more? Contact Us

New White Paper: Considerations for Optimizing Surface Finishing of 3D Printed Inconel 718

DMLS Metal PrintingMetal and metal alloy parts can now be made with near limitless design freedom to high standards using a wide range of metal powders via additive manufacturing (AM). And while prototyping metals with 3D printed technologies has proven quite valuable, it is no longer solely for design validation. It is now being used for the production of components for the most demanding applications in aerospace, automotive, medical, dental, and industrial industries.

This added value does not come without its challenges, however. Many of these challenges appear in the post-print stage after the geometry has been generated in achieving an acceptable finish on the part.

Our latest white paper discussions a novel approach to smoothing the surface profile for one particular metal produced by AM, nickel superalloy Inconel 718. Key considerations reviewed in this paper include part density and hardness, corrosion (chemical) resistance, grain structure, as well as manufacturing factors including the impact of print technology and print orientation on surface profile outcome.

Learn about how combining software-driven automation and a patent-pending chemistry solution dramatically improves surface finish results including reduced technician touch time and increased consistency and productivity.

->Access the White Paper

->Return to Blog Homepage

 

 

Announcing the new FORTI™ Support Removal Solution

FORTIAnnouncing our latest innovation, the new automated and intelligent FORTI™ support removal solution. The FORTI leverages PostProcess’ proven submersible technology already available in our CENTI and DEMI for consistent, hands-free support structure and resin removal on 3D printed PolyJet, FDM, SLA and CLIP parts. We designed the FORTI specifically to address the growing market demand for a software-driven system between our desktop-sized CENTI™ machine solution and production scale DEMI™ machine.

Just like its big brother, the DEMI, the FORTI is enabled by PostProcess’ patent-pending AUTOMAT3D™ software platform. Designed within our family of submersible support removal solutions, the FORTI’s highly engineered Submersed Vortex Cavitation (SVC) technology utilizes advanced ultrasonics, heat and fluid flow in concert with our proprietary additive formulated chemistry. An advanced pumping scheme creates vortex action to optimize the rate of removal of the support material and minimize buoyancy issues to virtually eliminate damaged parts. You can learn more about SVC technology in our recent video on the DEMI solution.

With the FORTI’s software-driven automation, operators spend less time on tedious, manual support removal and more time on value-added tasks. Utilizing user-friendly controls, throughput will accelerate with the ability to optimize cycles to produce consistent end parts via the system’s pre-designed agitation levels.

Whether you’re printing PolyJet, FDM, SLA or CLIP parts, find out what the FORTI can do for you and contact us today.

-> See the FORTI’s Specifications

-> Check out the full lineup in our Support Removal Family

-> Learn more about our technology on our Blog

Site Map | Terms of Use | Privacy Policy | © 2019 PostProcess Technologies. All Rights Reserved | 2495 Main Street, Suite 615, Buffalo, NY 14214, USA | Phone: 1.866.430.5354 | info@postprocess.com

Twitter
YouTube
LinkedIn
Facebook